Компьютерные сети и технологии
Привет
Пользователь:

Пароль:



[ ]
[ ]

В сети
Гостей: 9
Участников: 0
На странице: 1
Участников: 3878, Новичок: ritasovurova

Проектирование СКС
на Wednesday 19 April 2006
от список авторов
в Сети (локальные и компьютерные) > Теория построения сетей


ПРИМЕР ПРОЕКТИРОВАНИЯ СКС
Рассмотрим пример использования основных положений изложенного выше материала для проектирования кабельной системы в некотором гипотетическом проекте. Изложение материала ведется, по возможности, без привязки к СКС конкретного типа. В тех ситуациях, когда возникает необходимость выполнения конкретных расчетов, для определенности используются числовые параметры элементной базы российской кабельной системы АйТи-СКС.
9.1. Исходные данные
Структурированная кабельная система устанавливается в 4-этажном здании офисного назначения, отдельные этажи которого имеют идентичную планировку, изображенную на рис. 9.1 на примере первого этажа. Высота этажа в свету между перекрытиями составляет 3,5 метра, общая толщина междуэтажных перекрытий равна 50 см.
Создаваемая СКС должна обеспечивать функционирование оборудования ЛВС и телефонной сети офисного здания. Электронная УПАТС заказчика имеет полную емкость порядка 400 внутренних номеров, к ее портам на начальном этапе эксплуатации информационно-вычислительной системы предполагается подключать в основном однопарные телефонные аппараты. СКС предназначена для создания обычной сети связи и по ней предполагается передача информации, которая не относится к разряду конфиденциальной.
Из структуры организации, которая будет эксплуатировать кабельную систему сразу после завершения ее строительства, и технических требований следует, что функционирование ЛВС заказчика связано с обработкой и передачей достаточно больших объемов информации в процессе решения нескольких типовых задач.
Дополнительно предусматривается:
• подключение УПАТС организации к входному 100-парному кроссу городской телефонной сети;
• соединение ЛВС организации по двум каналам с пропускной способностью не менее 100 Мбит/с каждый с ранее построенной сетью в другом здании по кабелю, прокладываемому по свободному каналу существующей кабельной канализации; схема канализации изображена на рис. 9.2 (подъемы и спуски считаются по направлению, отмеченному стрелкой).

Подземный кабельный ввод расположен в районе пересечения координатных осей 9 и К .
В коридорах и в рабочих помещениях для размещения пользователей строительным проектом здания предусмотрена установка подвесного потолка с высотой свободного пространства 80 см. За фальшпотолком имеется достаточно свободного места для размещения лотков, используемых для прокладки кабелей различного назначения. Стены здания и внутренние некапитальные перегородки, отделяющие отдельные помещения друг от друга, изготовлены из обычного кирпича и покрыты слоем штукатурки, толщина которого составляет 1 см. Каких-либо дополнительных каналов в полу и стенах, которые могут быть использованы для прокладки кабелей, строительным проектом здания не предусмотрено.
В здании строительным проектом предусматривается стояк на основе трех труб с диаметром в свету 80 мм, каналы для установки которых проходят вдоль правой от входа стены помещений Х28 на всех этажах здания на расстоянии 80 см от задней стены (рис. 9.3).


Кабельные вводы в технические помещения и рабочие помещения для пользователей реализованы на основе нескольких металлических труб с диаметром в свету 32 мм. Помимо информационных розеток для обслуживания каждого рабочего места предусматривается две силовые розетки, подключенные к сети гарантированного электроснабжения, и одна силовая розетка, подключенная к сети бытового электропитания. Прокладку силовых кабелей, а также их подключение к силовым розеткам и силовому распределительному щитку осуществляет смежная субподрядная организация.
9.2. Архитектурная фаза проектирования
На каждом этаже здания согласно плану на рис. 9.1 имеется по 18 рабочих помещений, предназначенных для размещения пользователей. Данные по площади этих помещений сведены в табл. 9.1. В соответствии с положениями раздела 4.3.1 со ссылкой на СНиП 2.09.04-87, пункт 3.2 для здания офисного назначения предполагаем установку по одному блоку розеток преимущественно на каждые 4 м2 рабочей площади. Дополнительно для увеличения удобства обслуживания и эксплуатационной гибкости информационно-вычислительной системы в целом предусматриваем по три блока розеток в каждом техническом помещении на этажах здания, то есть на каждом этаже необходимо в общей сложности установить 90 блоков розеток, а всего в здании - 360 блоков розеток.

9.2.1. Технические помещения
Рабочие площади на каждом этаже, предназначенные для размещения рабочих мест пользователей, в соответствии с данными табл. 9.1 составляет 380 м2. Согласно нормам, приведенным в разделе 3.2.2, площадь аппаратной, обслуживающей рабочие места здания, должна составлять 10,6 м2. Там же введено ограничение на минимальную площадь аппаратной в 14 м2. Для размещения аппаратной представляется наиболее целесообразным выделение комнат 128 и 129, так как они расположены на первом этаже, не являются проходными, не имеют окон и не примыкают к внешним стенам здания, расположены недалеко от лифтов и т.д. Комната 128 имеет площадь 12,9 м2, что всего на 1,1 м2 меньше требуемой нормы, однако превышает рекомендуемую площадь аппаратной, полученную исходя из удельной нормы - 0,7% от рабочей площади (табл. 9.2).

При выборе окончательного решения в пользу того или иного помещения дополнительно привлекались следующие соображения. Согласно первому варианту принимается расположение аппаратной в комнате 128. Площадь этого помещения может быть достаточно быстро и просто доведена до нормативной переносом лицевой некапитальной стены в сторону коридора примерно на 50 см. Данная операция осуществляется немедленно или в перспективе при возникновении подобной необходимости, для чего имеются все необходимые предпосылки. Вторым вариантом является организация аппаратной в смежном помещении 129, которое отвечает всем требованиям стандартов в отношении своих габаритов. Площадь 20,1 м2 этого помещения превышает нормативную. При этом, однако, несколько усложняется реализация магистральных подсистем, так как для доступа к существующему стояку потребуется организация горизонтального канала. С учетом этого обстоятельства в данном конкретном случае остановимся на первом варианте.
Нормативная площадь под помещение кроссовой исходя из количества обслуживаемых ИР согласно разделу 3.3.1 должна составлять 6,2 м2, что несколько превышает минимально допустимое значение в 6 м2. Под кроссовые на разных этажах выделяются комнаты 228, 328 и 428 с площадью, вдвое превышающей нормативную. Расположение этих технических помещений непосредственно над аппаратной существенно упрощает конструкцию междуэтажных переходов и позволяет обойтись одним стояком без горизонтальных участков прокладки магистрального кабеля. Кроме того, наличие резервов по площади и установка ИР позволяет в перспективе разместить в этих помещениях дополнительное сетевое оборудование коллективного пользования в случае существенной модернизации сети предприятия.
Во всех технических помещениях в соответствии с требованиями раздела 3.2.5 выполняется перевешивание двери, которая должна открываться наружу.
УПАТС, серверы и центральное оборудование ЛВС будут размещены в помещении аппаратной, то есть СКС строится по двухуровневой схеме с использованием принципа многоточечного администрирования.
9.2.2. Кабельные каналы различного назначения
Для прокладки горизонтальных и магистральных кабелей подсистемы внутренних магистралей проектируемой СКС используем следующие разновидности каналов:
• закрытые металлические лотки за фальшпотолком, предназначенные для прокладки кабелей горизонтальной подсистемы в коридорах;
• декоративные кабельные короба (в связи с отсутствием каналов в стенах и в полу рабочих помещений пользователей), изготовленные из негорючего пластика и используемые для прокладки кабелей горизонтальной подсистемы и силовых кабелей питания;
• закладные трубки типа гильз диаметром в свету 32 мм, через которые производится ввод за фальшпотолок рабочих помещений пользователей горизонтальных кабелей, снимаемых с лотка в коридоре;
• вертикальные трубчатые элементы типа рукавов диаметром в свету 80 мм, расположенные вдоль правой стены технического помещения на расстоянии примерно 80 см от его задней стены и выполняющие функции каналов стояка и используемые для прокладки по ним кабелей подсистемы внутренней магистрали.
Лотки располагаются за фальшпотолком, крепятся не реже чем через 1,5 м и заземляются по правилам ПУЭ (раздел 3.8.3.2). Высота установки корпуса лотка выбирается равной 3 м от уровня пола.
Для уменьшения расхода декоративного короба и соответственно минимизации стоимости проекта и некоторого снижения продолжительности его реализации применяется горизонтальная прокладка короба в помещениях для размещения пользователей на высоте расположения розеток и одним вертикальным спуском из-за фальшпотолка для прокладки кабелей.
Под рукавами на каждом этаже предусматриваются крепления вертикальных участков магистральных кабелей, расположенных на расстоянии не более 1 м друг от друга.
Коммутационные панели различного назначения, смонтированные в каждой кроссовой этажа, выполняют поддержку функционирования активного сетевого оборудования, подключаемого к 90 ИР. В данной разновидности технического помещения используем установку оборудования в закрытом монтажном конструктиве типа шкафов со стеклянными передними дверями.
Помещение аппаратной для экономии площади совмещается с кроссовой первого этажа. Поэтому с учетом размещения дополнительного сетевого оборудования коллективного пользования в этом техническом помещении устанавливаем два монтажных конструктива.
В помещениях КЭ используется центральное размещение шкафа с круговым подходом к нему. В аппаратной шкафы устанавливаются в ряд и скрепляются друг с другом. Относительно небольшая ширина технического помещения (2640 мм) не дает возможности обеспечить круговой доступ к монтажному конструктиву в аппаратной с шириной прохода по правилам BICSI. Поэтому ряд шкафов в аппаратной устанавливается вплотную к правой относительно входа стене помещения. Смещение шкафов вправо относительно продольной оси помещения аппаратной обусловлено прохождением по этой стене каналов стояка. В этом случае проход имеет ширину: 264 - 2 х 80 = 104 см, что превышает минимально допустимое значение 76 см. Расстояние от стены до задней стенки шкафа выбирается равным 1 м, что позволяет получить:
• свободный доступ к задней двери шкафа;
• легкость ввода магистральных кабелей в каналы стояка.
Для обеспечения удобства эксплуатации кабельной системы и сетевого оборудования, монтируемого в аппаратной, навеска двери стоящего возле стены шкафа выполняется таким образом, чтобы она открывалась слева направо.
Кроссовое оборудование СКС, обеспечивающее работу телефонной станции, выполняется в виде кроссовых башен, которые вместе с организаторами устанавливаются на стене помещения. Емкость этих башен составляет 400 пар. Высота установки башен для обеспечения удобства обслуживания и переключения выбирается таким образом, чтобы верхний край основания находился на высоте 1,7 м от уровня пола. При этом крайний организатор башни располагается на расстоянии примерно 900 мм от монтажного шкафа, что обеспечивает полное открывание двери и свободный подход к оборудованию.
УПАТС располагается на короткой торцевой стене помещения аппаратной напротив монтажных шкафов. Размещение настенного кросса между монтажным конструктивом и телефонной станцией уменьшает общий расход кабеля и упрощает монтаж оборудования.
9.3. Телекоммуникационная фаза проектирования
На момент проведения проектных работ основным стандартом построения ЛВС является Ethernet в различных вариантах. Использование для реализации горизонтальной подсистемы элементной базы категории 5е обеспечивает передачу по трактам СКС сигналов всех широко распространенных на практике разновидностей этого сетевого интерфейса ЛВС, вплоть до его сверхвысокоскоростного варианта Gigabit Ethernet 802.ЗаЬ. Тем самым предлагаемое решение обеспечивает резерв пропускной способности горизонтальных трактов СКС, достаточный для поддержки функционирования всех известных на момент проектирования и перспективных видов приложений, то есть надежную защиту инвестиций заказчика, сделанных им в СКС.
Согласно исходным данным создаваемая информационно-вычислительная система предприятия не предназначена для передачи конфиденциальной информации. Поэтому структурированная кабельная система строится на более дешевой и менее сложной в практической реализации неэкранированной элементной базе.
9.3.1. Подсистема рабочего места
Состав розеток на каждом рабочем месте определен заказчиком в технических требованиях и приводится в исходных данных, согласно которым предусматривается по одной ИР с двумя розеточными модулями, образующими абонентские порты СКС, и по три силовые розетки различного назначения.
Тип розеточных модулей определяется с учетом требований по пропускной способности, конфигурации рабочего места и выбранного способа крепления. В данном конкретном случае для построения информационных розеток применим одиночные модули категории 5е серии МАХ типа MX-C5-02-IT, попарно устанавливаемые на свое посадочное место в гнездо Mosaic 45 с использованием адаптера MX-45-82-IT Применение двух розеточных модулей категории 5е определяется соображениями универсальности и полностью соответствует требованиям стандарта ISO/IEC 11801 в редакции 2000 года.
Информация о количестве информационных и силовых розеток в каждом помещении заносится в табл. 9.4.

9.3.2. Проектирование горизонтальной подсистемы
В рассматриваемом здании отсутствуют большие залы и компактные обособленные группы пользователей. На основании этого в нем не будет применяться прокладка кабелей под ковром и нецелесообразна реализация отдельных участков и некоторых трактов горизонтальной подсистемы на основе многопарного кабеля. В свою очередь это означает, что в СКС не требуются точки перехода и консо-лидационные точки.
Таким образом процесс проектирования горизонтальной подсистемы в данном случае сведется к расчету объема поставки горизонтального кабеля и определению его конструктивного исполнения.
Горизонтальная подсистема СКС строится на основе неэкранированных 4-пар-ных кабелей категории 5е, проложенных по два к каждому блоку розеток. Требуемое количество кабеля рассчитывается с использованием статистического метода. Основанием для его использования служит тот факт, что на каждом этаже имеется свыше 42 информационных розеток и выполнено требование равномерного распределения розеток по обслуживаемой площади.
На каждом этаже устанавливается по 90 ИР. В соответствии с обоснованиями, для размещения коммутационного оборудования СКС и активного сетевого оборудования ЛВС в кроссовых используем напольные монтажные шкафы. Минимальная высота этих конструктивов будет составлять примерно 35 U.
В качестве ИР, имеющей минимальное расстояние от технического помещения примем розеточный блок номер 3 в помещении 29. ИР с максимальной длиной кабельного проброса является розеточный блок номер 4 в помещении 14. Расчеты максимальной и минимальной длин кабельных пробросов приведены в табл. 9.3 и свидетельствуют о том, что максимальное значение этого параметра не превышает 70 м. Поэтому статистический метод применим ко всем ИР, обслуживаемым коммутационным оборудованием в данном техническом помещении. Длина кабеля, затрачиваемого на реализацию среднего проброса с учетом 10-процентного технологического запаса, составит 1,1 х 33,3 = 36,6 м. Одной стандартной 1000-футовой коробки кабеля будет достаточно для реализации в среднем 305 / 36,6 = 8 пробросов. Общее количество пробросов на одном этаже равно 2 х 90 = 180, а для их реализации потребуется 23 коробки 4-парного горизонтального кабеля.
Прокладка кабелей горизонтальной подсистемы на всем протяжении любой трассы, то есть в коридорах, технических и рабочих помещениях здания осуществляется в закрытых каналах, изготовленных из несгораемых материалов. Это позволяет применить более дешевое конструктивное исполнение этих изделий с оболочкой из поливинилхлорида.
9.3.3. Проектирование подсистемы внутренних магистралей
Кабели подсистемы внутренних магистралей связывают между собой коммутационное оборудование, установленное в помещениях кроссовых и аппаратной. Согласно исходным данным по этим кабелям передаются в основном информационные потоки, создаваемые сетевой аппаратурой ЛВС, и телефонные сигналы учрежденческой АТС. В проектируемой системе принят принцип использования 2-портовых информационных розеток на рабочих местах. На этажах отсутствуют выносы и концентраторы УПАТС. На основании данных двух факторов следует ожидать передачи по магистральным кабелям сигналов значительного числа телефонных разговоров. Исходя из указанного обстоятельства, с учетом принятого принципа многоточечного администрирования принимается следующая идеология построения подсистемы внутренних магистралей:
• часть подсистемы внутренних магистралей, предназначенная для обслуживания работы телефонной сети, строится на многопарном кабеле из витых пар категории 3;
• для организации части подсистемы внутренних магистралей, обслуживающей работу ЛВС, используется волоконно-оптический кабель;
• для увеличения эксплуатационной гибкости и живучести создаваемой системы применяется дублирование каждой пары волокон 4-парным кабелем из витых пар категории 5е.
В соответствии с исходными данными общая высота здания составляет 16м. Через технические помещения проходят каналы стояка. С учетом данных обстоятельств максимальная длина магистрального кабеля будет составлять примерно 25 м.
Рассчитаем требуемую суммарную емкость кабелей в парах/волокнах. Проектируемая кабельная система имеет высокую степень интеграции. При этом подсистема внутренней магистрали строится из расчета обеспечения функционирования ИР с двумя розеточными модулями на каждое рабочее место. Исходя из выбранной конфигурации принимаем, что на каждое рабочее место во внутренней магистрали здания следует предусмотреть 2 пары категории 3, 0,4 пары категории 5е и 0,2 волокна и соответственно на каждый этаж: 180 пар категории 3, 36 пар категории 5е и 18 оптических волокон. Данная информация позволяет определить емкость магистральных кабелей и при необходимости конкретизировать их конструкцию.
Промышленность серийно выпускает кабели из витых пар категории 3 емкостью 25, 50 и 100 пар. Поэтому при реализации магистральных трактов для передачи сигналов УПАТС целесообразно использовать два 100-парных кабеля.
Определим емкость и количество оптических кабелей внутренней магистрали. Расчетом установлено, что для организации магистральных трактов ЛВС на участке «КЭ - аппаратная» требуется в общем случае 18 волокон. Кабели внутренней прокладки подобной емкости из-за особенностей своей конструкции обладают неудовлетворительными массогабаритными характеристиками, плохой гибкостью и повышенной стоимостью. Поэтому в данном конкретном проекте применим вдвое большое количество 12-волоконных кабелей. На основании положений табл. 4.6 в качестве основы магистрали для передачи сигналов ЛВС следует использовать многомодовый волоконно-оптический кабель внутренней прокладки с волокнами традиционной конструкции типа 62,5/125, которые обеспечивают несколько меньшие потери ввода и не столь требовательны к качеству монтажа вилок оптических разъемов.

Семенов А.Б.

9.3.4. Проектирование подсистемы внешних магистралей
По кабельным трактам подсистемы внешних магистралей согласно исходным данным должны передаваться два 100-мегабитных информационных потока. В случае применения наиболее распространенной в настоящее время технологии Ethernet для организации таких трактов потребуется оптический кабель, содержащий не менее четырех волокон. С целью увеличения эксплуатационной гибкости проектируемой сети и создания задела на перспективу в данном случае используем 8-волоконный кабель вдвое большей емкости. Прокладка кабеля подсистемы внешних магистралей выполняется по каналу канализации общей длиной 1850 м согласно плану на рис. 9.2. На основании этого для организации этой линии выбираем одномодовый кабель внешней прокладки. Данное изделие имеет защитное покрытие из стальной гофрированной ленты и гидрофобное заполнение внутренних пустот сердечника для защиты от влаги. Кабель в соответствии с заводскими ТУ может без каких-либо ограничений эксплуатироваться в каналах кабельной канализации и имеет максимально допустимое растягивающее усилие ЗкН.
Промышленность выпускает подобные кабели в соответствии с ТУ с максимальной строительной длиной 4 км, то есть линейную часть подсистемы внешних магистралей было бы целесообразно строить без установки промежуточной муфты. Для выбора способа прокладки определим ожидаемое усилие тяжения в соответствии с рекомендациями Международного союза электросвязи. При выполнении расчетов принимается отсутствие эффекта заклинивания (kM = 1), так как прокладка согласно исходным данным ведется в свободный канал кабельной канализации. Результаты расчетов сведены в табл. 9.7 и свидетельствуют о необходимости применения одного или нескольких методов по уменьшению усилий тяжения до допустимого значения.
Для достижения поставленной цели выполним протяжку из промежуточной точки Е, что позволяет сократить максимальную длину трассы прокладки на 500 м и уменьшить на каждом участке количество точек поворота в процессе прокладки до одной. Результаты расчетов (табл. 9.8) свидетельствуют о том, что в этом случае ожидаемое усилие тяжения не превышает 1720 Н, что более чем в 1,5 раза ниже допустимого по ТУ для данного типа кабеля.
Кабельный ввод в здание расположен таким образом, что расстояние от него до аппаратной составляет около 8 м, то есть даже с учетом подъема из подвала длина прокладываемого внутри здания кабеля подсистемы внешних магистралей не превышает 15 м. Это позволяет использовать более дешевую конструкцию с оболочкой из полиэтилена без перехода на кабели с внешними негорючими защитными покрытиями. Для организации трассы прокладки внутри здания от точки кабельного ввода до аппаратной применяется трубная разводка, которая обеспечивает выполнение норм противопожарной безопасности и надежную защиту кабеля от механических повреждений в процессе эксплуатации.
Общую длину кабеля с учетом величины технологических запасов на неровности укладки и установку оконечных коммутационно-разделочных устройств определим как 1850 х 1,057 + 2x15 + 2x5 = 1995 м = 2000 м.

9.3.5. Проектирование административной подсистемы
9.3.5.1. Выбор типа коммутационного оборудования и схемы подключения сетевых устройств
В качестве коммутационного оборудования в технических помещениях используем:
• 19-дюймовые панели с модульными разъемами в фиксированной конфигурации - для подключения кабелей горизонтальной подсистемы;
• 19-дюймовые панели типа 110 - для подключения многопарных магистральных кабелей категории 3 в этажных кроссовых и кроссовые башни типа 110 в аппаратной;
• наборные панели с модульными разъемами - для организации резервных магистральных линий категории 5е;
• коммутационные полки с дуплексными розетками многомодового разъема типа SC - для подключения оптических кабелей подсистемы внутренних магистралей;
• коммутационную полку с розетками одномодового разъема типа FC - для подключения оптического кабеля подсистемы внешних магистралей.
Во всех технических помещениях нижнего уровня данного конкретного проекта, то есть в КЭ, а также в аппаратной в той ее части, которая обслуживает рабочие места первого этажа, для подключения высокоскоростного сетевого оборудования к горизонтальной подсистеме будет использоваться метод коммутационного подключения (interconnect). Для подключения к кабельной системе кросса УПАТС используется схема связи между кроссами.
9.3.5.2. Расчет количества устройств коммутационного оборудования и их аксессуаров
Каждое техническое помещение проектируемой системы обслуживает 90 2-пор-товых ИР на рабочих местах. Для подключения горизонтальных кабелей потребуется 2 х 90 / 24 = 8 панелей высотой 1 U с 24 розеточными частями разъемов. Выбор именно этой разновидности панелей обосновывается несколько меньшей трудоемкостью монтажа по сравнению с панелями удвоенной высоты.
Для подключения многопарных кабелей категории 3 подсистемы внутренней магистрали в каждом монтажном шкафу, установленном в КЭ, потребуется одна 200-парная панель типа ПО.
Резервные кабели категории 5е заводятся на наборные панели. В каждой КЭ имеется по 9 таких кабелей. Соответственно в аппаратную по каналам стояка прокладывается 27 кабелей категории 5е. Поэтому в проектируемой системе потребуется в общей сложности 5 наборных панелей: по одной — в каждой из КЭ и две - в аппаратной.
Розеточные модули в наборных панелях, устанавливаемых в КЭ, монтируем в их правой части под up-link-портами коммутаторов уровня рабочей группы. Часть установочных гнезд для розеточных модулей этих панелей остается свободными. В качестве монтажного конструктива в разделе 9.2.3 выбраны шкафы со стеклянной передней дверью. Поэтому для улучшения эстетических показателей коммутационного поля свободные проемы закрываются заглушками. Наборная панель имеет проемы, каждый из которых рассчитан на установку двух модулей. Тогда в КЭ в наборных панелях остается незадействованными 12-9/2 = 7 проемов, а в аппаратной 2 х 12 - 27 / 2 = 10 проемов, и всего понадобится 3x7 + 10 = 31 заглушка.
В каждую КЭ заводится по два 12-волоконных оптических кабеля внутренней прокладки. Оптическая полка высотой 1 U для их подключения имеет 2 кабельных ввода и 12 дуплексных розеток SC, то есть в одной такой полке может быть разделано оба кабеля. Стандартная сплайс-пластина комплектуется следующими элементами: корпусом с встроенным в него организатором технологического запаса волокон, двумя съемными держателями гильз КДЗС на 6 посадочных мест и защитной крышкой. В каждой полке может быть установлено по две сплайс-пластины. Для увеличения функциональной гибкости создаваемой сети выполним оконцевание всех волокон кабелей, вводимых в полку, для чего потребуется 24 монтажных шнура с вилкой многомодового разъема SC. В аппаратной установим 3 аналогичных оптических полки с такой же комплектацией аксессуарами. Это обеспечивает единство применяемой элементной базы и несколько упрощает процедуру монтажа.
В аппаратную дополнительно вводится кабель подсистемы внешних магистралей. Для его подключения заказывается полка высотой 1 U с 8 одномодовыми розетками FC. В процессе подключения используется 8 одномодовых монтажных шнуров с вилками разъема FC, 8 защитных гильз КДЗС, одна сплайс-пластина с комплектацией, аналогичной применяемой в полках с многомодовыми разъемами.
Для подключения УПАТС к СКС использована схема связи между кроссами. Со стороны СКС к кроссу подходит 2 х 400 = 800 пар. Для разводки этих пар используем две 400-парные настенные кроссовые башни. В качестве промежуточного кросса УПАТС кросса выберем аналогичное оборудование. При этом из восьми 100-парных блоков этих башен семь предназначены для подключения внутренних телефонов, а восьмой - для подключения прямых городских номеров. Данный вариант возможен потому, что в соответствии с исходными данными на первом этапе функционирования информационно-вычислительной системы предприятия основная масса телефонных аппаратов будет эксплуатироваться по однопарной схеме. При полном переходе на 2-парную схему рядом с панелями может быть установлена настенная 100-парная панель, для чего в аппаратной имеется достаточно свободного места.
Результаты расчетов коммутационного оборудования, устанавливаемого в технических помещениях различного уровня, сведены в табл. 9.9.


Страница
1 : Оглавление
2 : Глава 1 (Основные сведения о СКС)
3 : Глава 2 (Основные вопросы проектирования СКС)
4 : Глава 3 (Архитектурная фаза проектирования)
5 : Глава 4 (Телекоммуникационная фаза проектирования)
6 : Глава 5 (Расчет декоративных коробов, монтажных конструктивов ...)
7 : Глава 6 (Технические предложения и проектная документация)
8 : Глава 7 (Правила противопожарной безопасности при проектировании СКС)
9 : Глава 8 (Особенности построения кабельной проводки СКС для передачи охраняемой информации)
10 > : Глава 9 (Пример проектирования СКС)
11 : Глава 10 Пример проектирования СКС - часть 2)
12 : Заключение

Поиск Компьютерные сети и технологии

Copyright © 2006 - 2020
При использовании материалов сайта ссылка на xnets.ru обязательна!